GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2012

CH2

SECTION A

Q. 1 (a) $\mathrm{C}_{19} \mathrm{H}_{40}$
(b) $\mathrm{C}_{19} \mathrm{H}_{40} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{C}_{11} \mathrm{H}_{22} \quad$ - allow ecf
Q. 2 2-chlorobutane
Q. 3

Q. 4 any number in range 1 to 6
Q. 5 (a) maximum mass $=44-45$ (g)
(b) (less solute would form as a solid) because more will remain in the solution
Q. 6 (a) iodine force is Van der Waals/ induced dipole-induced dipole (1)
diamond force is covalent bond/ description of attractive forces in a covalent bond (1)
(b) diamond would have a higher sublimation temperature because it has stronger forces/ forces are harder to break

SECTION B

Q. 7 (a) (i) one σ bond/ description of σ bond/ diagram to show overlap of s orbitals (1)
one π bond/ description of π bond/ diagram to show sideways overlap of p orbitals (1)
(ii) joining of many/lots of (small) units or many alkenes / molecules to make a large/long unit/ molecule
(iii)

(iv) $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{Cl}$
(b) (i) BF_{3} is planar triangular/ trigonal planar (1)
NH_{3} is pyramidal/ trigonal pyramid (1)
(ii) BF_{3} has 3 bond pairs (1)
NH_{3} has 3 bond pairs and 1 lone pair (1)

QWC the information is organised clearly and coherently, using specialist vocabulary where appropriate
(c) (i) co-ordinate/ dative covalent/ dative

- no credit for 'covalent'
(ii) $1091^{1} 2^{\circ}$ (accept any in range $109^{\circ}-110^{\circ}$)
(iii) 4 bond pairs/ bonds (around B)
- no credit for 'tetrahedral'
Q. $8 \quad$ (a) (i) $\quad \% \mathrm{H}=14.3$ (1)

$$
\begin{align*}
& \mathrm{C}: \mathrm{H}=\frac{85.7}{12.0}: \frac{14.3}{1.01}=7.14: 14.16(1) \\
& \text { empirical formula }=\mathrm{CH}_{2}(1) \tag{3}
\end{align*}
$$

(ii) $\quad M_{r}=42 /$ largest fragment has mass 42 (1)
$\left(\mathrm{CH}_{2}=14\right)$ therefore molecular formula $=\mathrm{C}_{3} \mathrm{H}_{6}$ (1)
(iii) CH_{3} is present
(b) 1 mark for each

Total [9]
Q. 9 (a) apparatus in which reaction can occur, e.g. flask/ test tube, and delivery/ rubber tube (1)
apparatus in which to measure volume of gas, e.g. over water with measuring cylinder/ gas syringe (1)
(b) (i) fewer moles of barium used / barium has a higher A_{r}
(ii) reaction faster/ more vigorous/ less cloudy solution formed with barium (1)
because ionisation energy of barium is less/ electrons lost more easily from barium/ barium is lower in the group/ barium hydroxide is more soluble (1)
(c) flame test (1) brick red for calcium and (apple) green for barium (1)

OR

add sulfuric acid/ sodium sulfate solution/ potassium sulfate solution (1)
white precipitate with Ba^{2+}, less precipitate/ no precipitate with Ca^{2+} (1)
(d) electrons correct - oxide ion clearly shows that 2 electrons originated from calcium atom (1)
charges correct (1)
(e) (i) add sulfuric acid/ sodium sulfate solution/ potassium sulfate solution (1)
filter (1)

$$
\mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{BaSO}_{4}(1) \quad \text { - state symbols ignored }
$$

(ii) moles $\mathrm{Ba}=2 / 137$ (1)

$$
\begin{equation*}
\text { mass } \mathrm{BaSO}_{4}=\underline{2 \times 233.1}=3.4(\mathrm{~g})(1) \tag{2}
\end{equation*}
$$

Q. 10 (a) both contain metallic bonds/ positive ions and delocalised electrons labelled on diagram (1)
those in magnesium are stronger/ harder to break/ need more energy to break (1)
because 2 electrons are involved in delocalisation/ attraction to the positive ions (1)
(b) reaction is hydrolysis of halogenoalkane/ nucleophilic substitution of halogenoalkane (1)
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{X}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{X}^{-} \quad \mathrm{X}$ can be Cl or $\mathrm{Br}(1)$
(white precipitate is) silver chloride and (cream precipitate is) silver bromide (1)
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgX}(\mathrm{s})$ or $\mathrm{AgNO}_{3}+\mathrm{X}^{-} \rightarrow \mathrm{AgX}+\mathrm{NO}_{3}{ }^{-}$

- state symbols ignored

QWC selection of form and style of writing appropriate to purpose and to complexity of subject matter
(c) caesium ions are bigger than sodium ions - accept 'atoms' (1)
co-ordination number $6: 6$ for sodium and $8: 8$ for caesium (1)
both cubic (1)
(d) reaction is electrophilic addition (1)
two possible products are 1-bromopropane and 2-bromopropane (1)
more 2-bromopropane formed (1)
because of greater stability of intermediate positive ion/ 2° carbocation

QWC legibility of text; accuracy of spelling, grammar and punctuation, clarity of meaning
Q. 11 (a) diagram completed with at least 1 water molecule and indication of interaction between O on one molecule and H on the other (1)
interaction between δ^{+}on H and lone pair on O (1)
interaction labelled hydrogen bond (1)
(b) (i) reduction/ redox - accept 'oxidation'
(ii) $\mathrm{I} \quad \mathrm{OH}$

II $\quad \mathrm{OH}$ is also present in water
(c) (i)

(ii) peak at 1650-1750 (1)
due to $\mathrm{C}=\mathrm{O}$ (1)
Q. 12 (a) incomplete p sub-shell/ outer electron configuration $s^{2} p^{5} /$ outer electrons in p subshell/ outer electrons in p orbitals/ valence electrons in p subshell/ valence electrons in p orbital
(b) (i) gaining one electron completes shell/ gives $\mathrm{p}^{6 /}$ takes an electron from another species/gains an electron

- do not accept 'attracts an electron'
(ii) fluorine because it is the smallest/ has the greatest electron affinity/ has the least shielding/ has the greatest effective nuclear charge/ oxidising power decreases as the group is descended
(c) oxidation state is $(+) 5 / \mathrm{V}$ - do not accept '5+'
(d) (i) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{\bullet} \quad$ - ignore hf
(ii) $\mathrm{CH}_{4}+\mathrm{Cl}^{\bullet} \rightarrow \mathrm{HCl}+{ }^{\bullet} \mathrm{CH}_{3}(1)$

$$
\begin{equation*}
{ }^{\bullet} \mathrm{CH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}^{\bullet} \tag{2}
\end{equation*}
$$

(e) products: ${ }^{\bullet} \mathrm{CFH}_{2}$ and Cl^{\bullet} (1)

C-Cl bond is the weakest/ most easily broken (1)

