

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

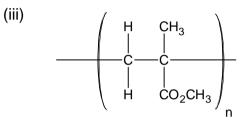
SUMMER 2012

CH2

SECTION A

Q.1	(a)	C ₁₉ H ₄₀	[1]
	(b)	$C_{19}H_{40} \ \to \ C_8H_{18} \ + \ C_{11}H_{22} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	[1]
Q.2	2-chlo	probutane	[1]
Q.3	H ₃ C H		[1]
Q.4	any n	umber in range 1 to 6	[1]
Q.5	(a)	maximum mass = 44-45 (g)	[1]
	(b)	(less solute would form as a solid) because more will remain in the solution	[1]
Q.6	(a)	iodine force is Van der Waals/ induced dipole-induced dipole (1)	
		diamond force is covalent bond/ description of attractive forces in a covalent bond (1)	[2]
	(b)	diamond would have a higher sublimation temperature because it has strong er forces/ forces are hard er to break	as [1]

Section A Total [10]


SECTION B

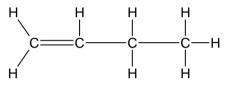
Q.7 (a) (i) one σ bond/ description of σ bond/ diagram to show overlap of s orbitals (1)

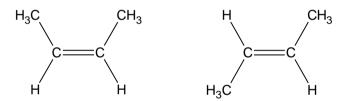
one π bond/ description of π bond/ diagram to show sideways overlap of p orbitals (1)

[2]

 (ii) joining of many/lots of (small) units or many alkenes / molecules to make a large/long unit/ molecule [1]

[1]


	(iv)	C ₄ H ₅ Cl	[1]
(b)	(i)	BF ₃ is planar triangular/ trigonal planar (1)	
		NH3 is pyramidal/ trigonal pyramid (1)	[2]
	(ii)	BF_3 has 3 bond pairs (1)	
		$\rm NH_3$ has 3 bond pairs and 1 lone pair (1)	[2]
		QWC the information is organised clearly and coherently, usir specialist vocabulary where appropriate	ng [1]
(c)	(i)	co-ordinate/ dative covalent/ dative - no credit for 'covalent'	[1]
	(ii)	109½° (accept any in range 109°-110°)	[1]
	(iii)	4 bond pairs/ bonds (around B) - no credit for 'tetrahedral'	[1]


Total [13]

Q.8 (a) (i) % H = 14.3 (1) C : H = $\frac{85.7}{12.0}$: $\frac{14.3}{1.01}$ = 7.14 : 14.16 (1) empirical formula = CH₂ (1) [3] (ii) M_r = 42/ largest fragment has mass 42 (1)

$$(CH_2 = 14)$$
 therefore molecular formula = $C_3H_6(1)$ [2]

(iii)
$$CH_3$$
 is present [1]

[3]

Q.9 (a) apparatus in which reaction can occur, e.g. flask/ test tube, and delivery/ rubber tube (1)

apparatus in which to measure volume of gas, e.g. over water with measuring cylinder/ gas syringe (1) [2]

- (b) (i) fewer **moles** of barium used / barium has a higher A_r [1]
 - (ii) reaction faster/ more vigorous/ less cloudy solution formed with barium (1)

because ionisation energy of barium is less/ electrons lost more easily from barium/ barium is lower in the group/ barium hydroxide is more soluble (1) [2]

(c) flame test (1) brick red for calcium **and** (apple) green for barium (1)

OR

add sulfuric acid/ sodium sulfate solution/ potassium sulfate solution (1)

white precipitate with Ba^{2+} , less precipitate/ no precipitate with Ca^{2+} (1) [2]

(d) electrons correct – oxide ion clearly shows that 2 electrons originated from calcium atom (1)

charges correct (1)

(e) (i) add sulfuric acid/ sodium sulfate solution/ potassium sulfate solution (1)

filter (1)

(ii) moles
$$Ba = 2/137(1)$$

mass BaSO₄ =
$$\frac{2 \times 233.1}{137}$$
 = 3.4 (g) (1) [2]

Total [14]

[2]

© WJEC CBAC Ltd.

Q.10 (a) both contain metallic bonds/ positive ions and delocalised electrons labelled on diagram (1)

those in magnesium are stronger/ harder to break/ need more energy to break (1)

because **2** electrons are involved in delocalisation/ attraction to the positive ions (1) [3]

(b) reaction is hydrolysis of halogenoalkane/ nucleophilic substitution of halogenoalkane (1)

 $C_4H_9 X + OH^- \rightarrow C_4H_9 OH + X^-$ X can be Cl or Br (1)

(white precipitate is) silver chloride and (cream precipitate is) silver bromide (1)

 $Ag^{+}(aq) + X^{-}(aq) \rightarrow AgX(s) \text{ or } AgNO_{3} + X^{-} \rightarrow AgX + NO_{3}^{-}$ (1)

- state symbols ignored [4]

QWC selection of form and style of writing appropriate to purpose and to complexity of subject matter [1]

(c) caesium ions are bigger than sodium ions – accept 'atoms' (1)

co-ordination number 6 : 6 for sodium and 8 : 8 for caesium (1)

both cubic (1)

[3]

(1)

(d) reaction is electrophilic addition (1)

two possible products are 1-bromopropane and 2-bromopropane (1)

more 2-bromopropane formed (1)

because of greater stability of intermediate positive ion/ 2° carbocation

[4] QWC legibility of text; accuracy of spelling, grammar and punctuation, clarity of meaning [1]

Total [16]

Q.11 (a) diagram completed with at least 1 water molecule and indication of interaction between O on one molecule and H on the other (1)

interaction between δ^+ on H and lone pair on O (1) interaction labelled hydrogen bond (1) [3]

(c) (i) [1]
$$H - C - C - H$$

(ii) peak at 1650-1750 (1)

Total [9]

Q.12	(a)	incomplete p sub-shell/ outer electron configuration s ² p ⁵ / outer electrons in p subshell/ outer electrons in p orbitals/ valence electrons in p subshell/ valence electrons in p orbital [1]
	(b)	 (i) gaining one electron completes shell/ gives p⁶/ takes an electron from another species/gains an electron - do not accept 'attracts an electron' [1]
		(ii) fluorine because it is the smallest/ has the greatest electron affinity/ has the least shielding/ has the greatest effective nuclear charge/ oxidising power decreases as the group is descended
		[1]
	(c)	oxidation state is (+)5/ V - do not accept '5+' [1]
	(d)	(i) $Cl_2 \rightarrow 2Cl^{\bullet}$ - ignore hf [1]
		(ii) $CH_4 + Cl^{\bullet} \rightarrow HCl + {}^{\bullet}CH_3(1)$
		${}^{\bullet}CH_3 + Cl_2 \rightarrow CH_3Cl + Cl^{\bullet} (1) $ [2]
	(e)	products: ${}^{\bullet}CFH_2$ and $CI^{\bullet}(1)$

C-CI bond is the weakest/ most easily broken (1) [2]

Total [9]

Section B Total [70]